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A generative adversarial network 
for synthetization of regions 
of interest based on digital 
mammograms
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Deep learning (DL) models are becoming pervasive and applicable to computer vision, image 
processing, and synthesis problems. The performance of these models is often improved through 
architectural configuration, tweaks, the use of enormous training data, and skillful selection of 
hyperparameters. The application of deep learning models to medical image processing has yielded 
interesting performance, capable of correctly detecting abnormalities in medical digital images, 
making them surpass human physicians. However, advancing research in this domain largely relies on 
the availability of training datasets. These datasets are sometimes not publicly accessible, insufficient 
for training, and may also be characterized by a class imbalance among samples. As a result, 
inadequate training samples and difficulty in accessing new datasets for training deep learning models 
limit performance and research into new domains. Hence, generative adversarial networks (GANs) 
have been proposed to mediate this gap by synthesizing data similar to real sample images. However, 
we observed that benchmark datasets with regions of interest (ROIs) for characterizing abnormalities 
in breast cancer using digital mammography do not contain sufficient data with a fair distribution of 
all cases of abnormalities. For instance, the architectural distortion and breast asymmetry in digital 
mammograms are sparsely distributed across most publicly available datasets. This paper proposes 
a GAN model, named ROImammoGAN, which synthesizes ROI-based digital mammograms. Our 
approach involves the design of a GAN model consisting of both a generator and a discriminator to 
learn a hierarchy of representations for abnormalities in digital mammograms. Attention is given 
to architectural distortion, asymmetry, mass, and microcalcification abnormalities so that training 
distinctively learns the features of each abnormality and generates sufficient images for each 
category. The proposed GAN model was applied to MIAS datasets, and the performance evaluation 
yielded a competitive accuracy for the synthesized samples. In addition, the quality of the images 
generated was also evaluated using PSNR, SSIM, FSIM, BRISQUE, PQUE, NIQUE, FID, and geometry 
scores. The results showed that ROImammoGAN performed competitively with state-of-the-art GANs. 
The outcome of this study is a model for augmenting CNN models with ROI-centric image samples for 
the characterization of abnormalities in breast images.

Abbreviations
PSNR  Peak Signal to Noise Ratio
AD  Architectural distortion
AdaGAN  Adaptive GAN
AI  Artificial intelligence
ASY  Asymmetry

OPEN

1School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, 
Pietermaritzburg Campus, Pietermaritzburg 3201, KwaZulu-Natal, South Africa. 2University of Hafr Al Batin, 
College of Computer Science and Engineering, Hafar Al Batin, Saudi Arabia. 3Department of Mathematics, National 
Institute of Technology Agartala, Agartala, India. 4Faculty of Computer Sciences and Informatics, Amman Arab 
University, Amman 11953, Jordan. 5School of Computer Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau 
Pinang, Malaysia. *email: oyeladeo@ukzn.ac.za; ezugwua@ukzn.ac.za; chiromaharun@fcetgombe.edu.ng

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-09929-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6166  | https://doi.org/10.1038/s41598-022-09929-9

www.nature.com/scientificreports/

BCDR  Breast Cancer Digital Repository
BEGANs  Boundary equilibrium GANs
BRISQUE  Blind/referenceless image spatial quality evaluator
C2ST  Classifier two-sample tests
CALC  Calcification
CBIS-DDSM  Digital Database for Screening Mammography
CC  Craniocaudal
CD  Contrast distortion
ciGAN  Class-conditional GAN
CNN  Convolutional neural network
D  Discriminator
DCGAN  Deep convolutional GAN
DDSM  Digital Database for Screening Mammography
DL  Deep learning
DSSIM  Dissimilarity Structured Similarity Indexing Method
ESRGAN  Enhanced SRGAN
FFDM  Full Field Digital Mammograms
FID  Frechet Inception Distance
FSIM  Feature Similarity Indexing Method
G  Generators
GAM  Generative adversarial metric
GAN  Generative adversarial networks
GD  Gradient descent
GP-GAN  Gaussian-Poisson Generative Adversarial Network
GS  Geometry score
IRMA  Image Retrieval in Medical Applications
IS  Inception Score
LAPGAN  Laplacian GAN
LC  Correlation
LD  Luminance distortion
LLIS  Low-level image statistics
LSGANs  Least Squares Generative Adversarial Networks
MedGAN  Medical GAN
MIAS  Mammographic Image Analysis Society
MLO  Mediolateral-oblique
MMD  Maximum mean discrepancy
MR  Magnetic resonance
MS  Mass
MSE  Mean Square Error
NDB  Number of statistically different bins
NIQUE  Natural Image Quality Evaluator
NNRs  Nonneuro radiologists
NRDS  Normalized relative discriminative score
NRs  Neuro radiologists
PPGNs  Plug and Play Generative Networks
PQUE  Perception based Image Quality Evaluator
ReLU  Rectified linear unit
RGBD  Red, green, blue dimension
RNN  Recurrent neural network
ROIs  Regions of interest
RRDB  Residual-in-Residual Dense Block
S2  Style and Structure
SalGAN  Saliency GAN
SGD  Stochastic gradient descent
SRGAN  Super-Resolution Generative Adversarial Network
SSIM  Structured Similarity Indexing Method
TWRSR  Tournament win rate and skill rating
UIQI  Universal image quality index
UNIT  Unsupervised image-to-image translation model
WGAN  Wasserstein GAN
WGANs  Wasserstein GANs boundary equilibrium GANs

Deep learning (DL) models represent a more complex architecture of multilayer perceptron or artificial neural 
networks and are able to learn hidden patterns in data. It also represents a subfield of machine learning and draws 
its concept of architecture layout from the human brain. DL models consist of deep discriminatory models that 
map a high-dimensional, rich input to a class label, such as a digital image. These models have attained huge 
success in areas requiring complex input in a representation such as an image, pixels, document of text data, and 
files of audio and video data. Two popular variants of the DL model are the convolution neural network (CNN) 
and recurrent neural network (RNN). CNN is a type of DL that uses convolutional operation, pooling, fully 
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connected, and activation functions to extract features from input data across different hierarchies for feature 
detection. CNNs have recorded noteworthy success in numerous fields, such as image processing, computer 
vision, and natural language processing and speech  recognition1–4. While training a CNN model, it is often 
desired that loss values drop while the accuracy improves. When the fully trained model is exposed to the test 
dataset, an appreciable drop in loss and an increase in accuracy are also expected. However, insufficient training 
data may impair this performance, leading to overfitting or poor  generalization5. Despite the use of dropout 
regularization, batch normalization, transfer learning, and other regularization techniques, the other limitations 
encountered provide intriguing research opportunities. To address these issues, data augmentation, a regulariza-
tion technique, has proven useful and effective in mitigating the  problem6–8. The data augmentation technique 
allows for artificially generating additional data from the available data by applying two approaches, namely, 
the standard or data transformation approach, neural style transfer, meta-learning, adversarial training, and 
the approach of generative adversarial networks (GANs). Transformation operations consist of image rotation, 
whitening, flipping, color space, cropping, translation, and noise injection.

GANs are a type of DL with significant recent progress compared to DL itself. GANs operate by the adversarial 
positioning of two CNN models against each other. The two CNN models are the discriminator (D) and genera-
tors (G). D is tasked with detecting the probability of knowing if the output of G is from the model distribution 
or the data distribution, while G is required to synthesize images from noise. The implication of this adversarial 
arrangement is to enable D to estimate the probability that a sample image came from the training data rather 
than images generated by G. The combination of these models illustrates a minimax two-player game such 
that the training of G maximizes the probability of D making a  mistake9. Measuring the loss of D will allow for 
quantification of how its performance is progressing, while the loss of G is aimed at quantifying its ability to 
trick D. Therefore, it is usually desired that G should perform well in a manner that its outputs are easily classi-
fied by D as real and not fake, as illustrated in Fig. 1. The resulting adversarial network, GAN, has demonstrated 
huge capability for data generation and has gained much attention in image classification and proven relevant 
in domains such as adaptation, data augmentation, and image-to-image  translation10.

Data augmentation using GANs has been recognized to boost the sensitivity of diagnosis with a clinically acceptable 
number of additional false  positives12. The popularity and adaptability of GANs is spurred on by challenges associated 
with accessibility to large amounts of medical  images13 and a high level of restriction to some specific categories of 
medical  images14. Another challenge of the publicly available dataset, which has now paved the way for wide adop-
tion of GANs, is due to little or no availability of annotated data that medical experts have  annotated12,15,16. Succes-
sive application of GANs as measures for mitigating the problem of overfitting in learning models has gained huge 
popularity among the community of deep learning researchers, especially those interested in image classification. It 
has also been observed that GAN models are relevant in domains other than image classification. Some examples are 
image-to-image translation, which is often applied to translating satellite photographs to Google Maps or converting 
day photos into night  photos17,18; face aging and  deaging19,20; attention  prediction21; text-to-image  translation22; gen-
erating realistic  photographs23,24; generating cartoon  characters25,26; face frontal view  generation27,28; generating new 
human  poses29,30; photos to  emojis31,32; photograph  editing33,34;  photoblending35;  superresolution36;  photopainting37–39; 
clothing  translation40–42; video  prediction43,44; and 3D object  generation45–47. These wide ranges of adaptability of GANs 
show that they have demonstrated excellent and broadly accepted performance in image generation.

However, GANs suffer from a few challenges, which still impede their constructability, and their adaptation 
to some real-world problems, such as medical sciences, remains a  challenge48. In general, considering that the 
cross-domain applicability of GANs is problems such as instability of GAN  models49, low quality or a substand-
ard image generated by GAN models usually leads to low-resolution medical images and may affect the image 
performance of the classifier. Additionally, difficulty generating wide categories of images across domains is a 
notable setback. GANs also present challenging training due to their difficulty adapting their parameters for 
image generation across fields. Other related problems include insufficient high standard metrics for perfor-
mance  measurement49,50; mode collapse and GANs failing to  converge51; overfitting resulting from imbalance 
from the D and G in  GAN52; and trustworthiness of generated medical data, which may be subjected to ethical 
considerations, thereby limiting  acceptability50. Most of these problems are researched through an architectural 
perspective or loss of the GAN model. In this study, we aim to remedy some of these well-known GAN problems 
and, importantly, generate ROI-based image samples to overcome problems of whole images in  CNNs53.

The current study aims to increase the availability of ROI-based artificial synthesized digital mammograms 
for the characterization of abnormalities in digital breast images through the use of GANs. To achieve these 

Figure 1.  Illustration of the generator and  discriminator11.
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goals, we propose ROImammoGAN, which is discussed in the subsequent sections. Therefore, we seek to pro-
pose procedures for improving the training of GANs to generate digital images of the breast. As a result of the 
proposed enhancement on our trained GAN, this study will further attempt to generate high-quality digital 
mammograms that deep learning models targeted at characterizing abnormalities in breast images and can 
employ for augmenting insufficient datasets. Our contributions as listed below:

• Designed G and D architectures resulting in a GAN model aimed at generating ROI-based digital mam-
mograms

• We adapted the GAN model to generate sample images for different abnormalities, namely, architectural 
distortion, microcalcification, asymmetry, and mass.

• We evaluated the performance of the proposed GAN model in comparison with other similar state-of-the-art 
models.

The remainder of this paper is organized as follows: “Related works”  section describes advances made in 
the design and implementation of GANs and the application of GANs; in “Overview of generative adversarial 
networks (GANs)” section, we provide an overview of basic concepts and terms used in GANs; in “Methodol-
ogy for ROImammoGAN” section, the proposed GAN model is described in detail; "Experimentation" section 
details various experiments carried out; “Results and discussion” section presents the performance comparison 
of the proposed ROImammoGAN model with other state-of-the-art GANs. Finally, the paper is concluded in 
“Conclusion” section.

Related works
In this section, we present the studies on generative adversarial networks and their applications in medical 
imaging. The review of studies on the application of GANs is limited to medical images, with particular inter-
est in breast imaging—digital mammograms. Our approach to the review presented in this section assumes a 
chronological pattern.

Generative adversarial networks (GAN). Chen et al. described an information-theoretic extension to 
the generative adversarial network, namely, InfoGAN, which could maximize the mutual information between a 
small subset of the latent variables and the observation. The proposed InfoGAN model learned disentangled rep-
resentations completely unsupervised and outperformed supervised learning approaches in similar tasks. The 
authors claimed that InfoGAN was successfully applied to disentangle writing styles from digit shapes on the 
MNIST dataset, pose from the lighting of 3D rendered images, hair style recognition, appearance of eyeglasses, 
and emotions. The study first compared InfoGAN with prior approaches on relatively clean datasets and then 
showed that InfoGAN could learn interpretable representations on complex datasets, where no previous unsu-
pervised approach was known to learn representations of comparable  quality54. This impressive performance of 
InfoGAN has yet to record significant success in medical imaging synthesis and feature extraction.

Another interesting variant of GAN applied to generating images from text is the StackGAN achieved through 
the stacking of two GANs on each other, as seen in the work of Zhang et al.55. Photorrealistic images were syn-
thesized from text descriptions through their proposed stacked generative adversarial networks (Stack-GAN) 
to generate photorealistic images conditioned on text descriptions. The generative model, which has two stages, 
works thus: The Stage-I GAN sketches the primitive shape and basic colors, while the Stage-II GAN takes Stage-
I results and text descriptions as inputs and generates high-resolution images. The two stages largely rely on 
the text description from which the images are being generated. We are particularly interested in the ability of 
StackGAN to generate high-resolution images using this two-stage approach, which may provide rich concepts 
to GAN models aimed at medial images. To make this generative model impressive, the authors reported that 
the model generates realistic 128 × 128 and 256 × 256 images (using the CUB and Oxford-102 datasets) with the 
Stage-II GAN able to rectify defects and add compelling details with the refinement  process55. Wang and Gupta 
approached the design of their GAN by considering the basic formation of images consisting of a structure, which 
is the underlying 3D model, and style representing the texture mapped onto the structure. The resulting model 
named Style and Structure Generative Adversarial Network (S2-GAN) has the Structure-GAN that generates 
a normal surface map, and the Style-GAN takes the normal surface map as input and generates the 2D image. 
The authors revealed that they trained the two GANs independently and then merged them via joint learning, 
which they claimed can be used to learn unsupervised RGBD  representations56. This approach is partly similar to 
the two-stage model demonstrated by StackGAN and will also present some traits that the digital mammogram 
generating model may likewise exploit.

The work of Nguyen et al.57 improved generative models for synthesizing realistic and high-resolution images 
through the performance of gradient ascent in the latent space of a generator network and introducing an addi-
tional prior on the latent code. These two additions to the generator network improve the sample quality and 
sample diversity and maximize the activations of one or multiple neurons in a separate classifier network. In 
addition, they provided a unified probabilistic interpretation of related activation maximization methods named 
plug and play generative networks (PPGNs), consisting of a generator network G that draws a wide range of image 
types and a conditioning network that tells the generator what to draw. The resulting GAN model successfully 
generated high-quality images at higher resolutions of 227 × 227 using the ImageNet dataset. They further applied 
their generative model to image painting and claimed that the proposed model could be applied to many types 
of data, including digital  mammograms57.

The proliferation of research in GANs has led researchers to reconsider new loss functions for optimizing the 
performance of GANs. The Wasserstein GAN (WGAN) was an offshoot from this consideration and aimed to 
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analyze the different ways to measure distances between the model distribution and the real  distribution58. As a 
result, studies such as that of Arjovsky et al.59 targeted improving the learning stability of GANs and overcom-
ing mode collapse introduced WGAN, an alternative to traditional GAN training. This concept proved relevant 
because it provided a meaningful learning curve useful for debugging and hyperparameter  searches59. In another 
related work, Arjovsky et al. observed that although WGANs proved to attain stability during the process, they 
still generated only poor samples or failed to converge due to weight clipping in WGANs to enforce a Lipschitz 
constraint on the critic. Gulrajani et al.60 proposed penalizing the norm of the gradient of the critic concerning 
its input to circumvent the challenge of clipping weights. The result of this improvement is the production of 
high-quality images, and it enables stable training of a wide variety of GAN architectures with almost no hyper-
parameter tuning, including 101-layer ResNets using CIFAR-10 and LSUN  bedrooms60.

Another study aimed to curtail the vanishing gradients problem during the learning process by reconsider-
ing the use of a sigmoid cross-entropy loss function in the discriminator of regular GANs. The authors achieved 
this by proposing least squares generative adversarial networks (LSGANs), which adopt the least squares loss 
function for the discriminator, which translates into a minimization of the Pearson (math processing error) 
divergence. The benefit of this approach is the production of high-quality images compared to regular GANs 
and a more stable model during the learning process. The model is attractive due to its stability and generation 
of high-resolution images as required for medical images since their evaluation of  LSGANs61.

In an attempt to manage the difficulty of training GANs and minimize the problem of mode collapse, Tol-
stikhin et al. A study proposed an iterative procedure where a new component is added into a mixture model 
at every step running a GAN algorithm on a reweighted sample. The resulting model was named AdaGAN and 
works by identifying potentially weak individual predictors and greedily aggregating them to form a robust 
composite predictor. The authors claimed that by this iterative and incremental procedure approach, their model 
attained convergence to the true distribution in a finite number of steps when each step was optimal and, as 
a result, addressed the problem of missing  modes62. In addition to tackling training problems associated with 
GANs, Odena et al.63 constructed a variant of GANs employing label conditioning that results in generating 
128 × 128 images of good resolution and global coherence. In addition, their conditional GAN was able to address 
the challenge of mode collapse, as they claimed that 84.7% of the classes have samples exhibiting diversity com-
parable to real ImageNet  data63.

Pana et al.64 addressed the problem of ineffective saliency prediction by proposing a saliency GAN (SalGAN). 
SalGAN was designed as a data-driven metric-based saliency prediction method and trained with an adversarial 
loss function, having a two-stage approach to saliency prediction: the first one predicts saliency maps from the 
raw pixels of an input image; the second one takes the output of the first one to discriminate whether a sali-
ency map is a predicted one or ground truth. The resulting SalGAN generated saliency maps that resemble the 
ground  truth64.

Another study focused on improving the resolution of generated images from GANs and called the model 
superresolution generative adversarial network (SRGAN). The SRGAN consists of three components: network 
architecture, adversarial loss, and perceptual loss, which were further improved by Wang et al.65 to obtain an 
enhanced SRGAN (ESRGAN). The authors introduced the residual-in-residual dense block (RRDB) without 
batch normalization as the primary network building unit and allowed the discriminator to predict relative real-
ness instead of the absolute value. The result of the ESRGAN showed that the model consistently outputs better 
visual quality and realistic images with more realistic and natural textures compared to  SRGAN65. Furthermore, 
Wu et al. proposed a class-conditional GAN that performed contextual in-filling for synthesizing lesions on to 
healthy screening mammograms. Their GAN model, named ciGAN, was acclaimed to be able to generate high-
resolution synthetic mammogram patches, with some diverse set of synthetic image patches at a high resolution 
of 256 × 256 pixels. The resulting ciGAN model was then applied to GAN-based augmentation, which improved 
mammogram patch-based classification by 0.014 AUC over the baseline model and 0.009 AUC over traditional 
augmentation  techniques66. This study demonstrated a very close concept proposed in this paper, which seeks 
to synthesize patches of images for use in GAN-based augmentation in characterizing abnormalities in digital 
breast images.

Furthermore, Guibas et al.67 proposed a novel, two-stage pipeline for generating synthetic medical images 
from a pair of generative adversarial networks, tested in practice on retinal fundi images. The authors developed 
a hierarchical generation process to divide the complex image generation task into geometry and  photorealism67. 
Similarly, Kazuhiro et al.14 also applied a deep convolutional GAN (DCGAN) model to generate human brain 
magnetic resonance (MR) images. They reported that the likelihood that images were DCGAN-created versus 
acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 nonneuroradiologists [NNRs]) in a 
binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of 
created images, 40–60%). None of the investigated images was rated as unknown. The NRs rated 45% and 71% 
as real magnetic resonance imaging images of the created images (NNRs, 24%, 40%, and 44%). In contrast, 44% 
and 70% of the real images were rated as generated images by NRs (NNRs, 10%, 17%, and 27%). The accuracy 
for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64)14.

More attention was given to high-resolution images in GAN-based studies in 2018–2019. One such study pro-
duced BigGAN, which was proposed by Brock et al.69 to generate images of high-quality resolution. Their proposed 
GAN model was a class-conditional image generating model that works by applying orthogonal regularization 
to the generator, which renders it amenable to a simple “truncation trick”. This, therefore, allows fine control over 
the trade-off between sample fidelity and variety by reducing the variance of the generator’s input. The resulting 
BigGAN was successfully applied to generate high-resolution images of sizes 128 × 128, 256 × 256 and 512 × 512 
using the ImageNet dataset. The authors claimed that the model outperformed similar models by obtaining an 
inception score (IS) of 166.5 and Fr ́echet inception distance (FID) of 7.4, improving over the previous best IS of 
52.52 and FID of 18.65, and improved the state-of-the-art inception score (IS) and Fr ́echet inception distance 
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(FID) from 52.52 and 18.65 to 166.5 and 7.4, respectively. In addition, at 256 × 256 and 512 × 512 resolutions, Big-
GAN achieved IS and FIDs of 232.5 and 8.1 at 256 × 256 and IS and FIDs of 241.5 and 11.5 at 512 ×  51268.

Another study revealed that conditional GANs are now at the forefront of natural image synthesis and 
therefore attempt to concentrate on addressing these problems. The authors leverage two unsupervised learning 
techniques, adversarial training, and self-supervision, and take steps toward bridging the gap between condi-
tional and unconditional GANs. They achieved this by allowing the three categories of networks to collaborate 
on representation learning. While the adversarial network plays its popular role, self-supervision encourages 
the discriminator to learn meaningful feature representations that are not forgotten during training. The authors 
reported that the resulting GAN model yielded high-quality synthesized  images69. While Chen et al. worked on 
conditional GANS, Shaham et al.70 focused on unconditional GAN, which they called SinGAN. They revealed 
that SinGAN can learn from a single natural image without an accompanying label. SinGAN was able to capture 
the internal distribution of patches within the image and generate high-quality images, overcoming the challenge 
of mode collapse. In addition, they reported that SinGAN contained a pyramid of fully convolutional GANs, each 
responsible for learning the patch distribution at a different scale of the image. Their model, therefore, allows 
generating new samples of arbitrary size and aspect ratio that have significant variability yet maintain both the 
global structure and the fine textures of the training  image70.

Similarly, while addressing the issue of high-resolution images to explore the capability of GANs in high-
resolution image blending tasks, Wu et al.71 also presented a GAN model called the Gaussian-Poisson generative 
adversarial network (GP-GAN) to leverage the strengths of the classical gradient-based approach and generative 
adversarial networks. The novelty of their approach lies in the use of the Gaussian-Poisson equation to formulate 
the high-resolution image blending problem—described as a joint optimization constrained by the gradient 
and color information. In addition, they applied a blending GAN to learn the mapping between the composite 
images and the well-blended images. The resulting GP-GAN model produced high-resolution, realistic images 
with fewer bleedings and unpleasant  artifacts71. Although previously reported GANs were largely applied to 
domains outside medical image generation, Yi et al.10 described a GAN capable of generating medical images that 
can help explore and discover the underlying structure of training data and learning to generate new  images10.

Recently, a study proposed a novel U-net-based GAN model for data augmentation that can realistically 
synthesize and remove lesions on mammograms. With self-attention and semisupervised learning components, 
the U-Net-based architecture can generate high-resolution images of size 256 × 256 pixels. The study reported a 
significant improvement in malignancy classification performance due to their proposed GAN  model72. While 
this study demonstrates a high-level GAN-based solution to the problem of scanty digital breast images used for 
deep learning classification purposes, we argue that their approach lacks the means to demonstrate overcom-
ing the mode collapse problem. In addition, we observed that the proposed model was focused on generating 
high-resolution images only of size 256 × 256 compared to those proposed by some models presented above. 
Meanwhile, we observed that most of the GAN models presented in the studies reviewed above are primarily 
applied to nonmedical-based images, except for the works of two authors, 2018 and 2020.

This paper, therefore, is focused on designing a GAN model capable of generating multiclass high-resolution 
images for digital mammograms covering all the categories of abnormalities known with breast cancer. Mam-
mograms contain both contextual information indicative of the breast anatomy and a great level of fine detail 
indicative of the parenchymal pattern. Much high-frequency information makes it imperative for radiologists 
to view these images at high resolution. In Table 1, we present a summary of all the related works which have 
been reviewed in this section. Meanwhile, the approach and domain of application of each of the GAN models 
are highlighted. Each study is compared with what is proposed in our work.

In our recent  study73, we demonstrated the use of a GAN model for synthesizing medical images with archi-
tectural distortion abnormality. The RoiMammoGAN proposed in this study is novel and has some has dis-
tinguishing features with shared similarities with mainstream GAN models. Although it shares the element of 
conditional GAN, it advances this approach to using class-label flipping mechanism as a form of image augmen-
tation strategy. Also, rather than using the normal convolutional operation, the proposed GAN model is based 
on deep convolutional-transpose network. The architectural composition of the model helped overcome major 
limitations of GANs such as mode collapse. RoiMammoGAN seeks to eliminate complexity of learning features 
during training through the use of staged-class-based learning approach.

Application of GANs to medical imaging classification. There are several applications of various 
GAN-based models to medical imaging classification problems. However, since the focus of this paper is not 
to apply the GAN-based model to the CNN-like model used for classification purposes, we have decided to 
present only a few works that have applied GAN-based models for such problems. Zhang et al.13 applied deep 
convolutional GANs (DCGANs), Wasserstein GANs (WGANs), and boundary equilibrium GANs (BEGANs) 
to develop a medical image synthesis model that generates images for convolutional neural networks (CNNs), 
which can capture feature representations that describe a high level of image semantic information. The authors 
revealed that the effectiveness of the generative network on the CNN model yielded an accuracy of 98.83%13. 
Though many studies have been done with recurrent neural networks (RNN)74–76, data-generating models based 
on such neural networks are yet to gain popularity.

In another study, the authors applied a GAN-based model that uses automatic bounding box annotation 
to CNN-based brain metastasis detection on 256 × 256 MR  images12. Korkinof et al.77 also demonstrated the 
benefit of adopting GAN models in generating full field digital mammograms (FFDMs) at a high resolution of 
1280 × 1024 pixels for medical  images77. This study is very interesting to us because of their ability to adapt their 
GAN model to a very difficult domain by generating realistic, high-resolution medical images for full-field digital 
mammograms (FFDMs). This difficulty usually arises from the textural heterogeneity, fine structural details and 
specific tissue properties of FFDM.
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In another study, the author proposed the application of a semisupervised generative adversarial network 
(GAN)-based method to predict binding affinity. While GAN-based networks were used for feature extrac-
tion and a regression network for prediction, this combination was used to learn protein drug features of both 
labeled and unlabeled  data78. MedGAN builds upon recent advances in the field of generative adversarial net-
works (GANs) by merging the adversarial framework with a new combination of nonadversarial losses. The 
study utilized a discriminator network as a trainable feature extractor that penalizes the discrepancy between 
the translated medical images and the desired modalities. Moreover, style-transfer losses are utilized to match 
the textures and fine structures of the desired target images to the translated  images79. Very recently, Singh and 
 Raza80 observed that DCGAN, Laplacian GAN (LAPGAN), pix2pix, CycleGAN, and unsupervised image-to-
image translation model (UNIT) GANs have gained popularity in the interpretation of medical  images80. Rijken 
et al.81 proposed a similar GAN model for synthesizing digital mammograms and named it MammoGAN. The 
authors reported that images with high resolution were successfully produced using their model. Although the 
approach was similar to what was proposed in this study, we note that their work was mainly on whole images 
and not ROI-based images, as we propose in this study.

Overview of generative adversarial networks (GANs)
In this section, preliminaries on GANs are presented. We emphasize the structure of vanilla GANs and some 
recent architectures with interesting performances. In addition, the challenges posed with training GANs and 
some useful techniques for circumventing these limitations are also discussed.

Table 1.  A summary of related studies, their approaches, and application as compared with what is obtained 
in this study.

Author and reference Approach and domain of application Comparison with this study

Chen et al.54
InfoGAN: based on unsupervised learning which maximizes mutual 
information in a small subset of latent variables. Applied to writing styles 
using MNIST

RoiMammoGAN: used semi-supervised learning. Applied to breast images 
from mammograms using MIAS

Zhang et al.55 StackGAN: stacked two GANs on each other. Applied to generating photo-
realistic images using CUB and Oxford-102 datasets

RoiMammoGAN: one GAN model sufficiently and accurately achieved our 
aim. Applied to breast images from mammograms using MIAS

Wang and  Gupta56 S2-GAN: composes of a style and structure GANS. Applied for generating 
structure and style in 2D images

RoiMammoGAN: learns the pattern and structure of abnormalities in medi-
cal images. Applied to breast images from mammograms using MIAS

Nguyen et al.57 PPGNs: used probabilistic interpretation and performance gradient to 
generate realistic and high-resolution images

RoiMammoGAN: combined the Adam gradient algorithm and performance 
increment to generate images. Applied to breast images from mammograms 
using MIAS

Neff58 WGAN: improved loss function performance using Wasserstein RoiMammoGAN: a combination of RELU and LeakyRELU were used for 
computing loss function

Arjovsky et al.59 WGAN: aimed to stabilize learning pattern and reducing mode collapse in 
GAN

RoiMammoGAN: architectural composition showed that this model over-
come mode collapse

Gulrajani et al.60 Used a penalization mechanism for norm gradient to overcome clipping 
weights. Used CIFAR-10 and LSUN bedrooms

RoiMammoGAN: the challenge of clipping weights was eliminated in our 
model. Applied to breast images from mammograms using MIAS

Mao et al.61 LSGAN: least squares loss function was used to curtail the vanishing gradi-
ents problem

RoiMammoGAN: kernel sizes of D and G were intelligently selected through 
investigative experimentation to overcome vansing gradient problem

Ilya et al.62 AdaGAN: addition of component through iterative procedure to avoid 
training problem

RoiMammoGAN: to eliminate complexity of learning features during train-
ing, staged-class-based learning was applied

Odena et al.63 CGAN: uses label conditioning to generate high resolution images RoiMammoGAN: adopted the label conditioning strategy in addition to 
label flipping

Pana et al.64 SalGAN: designed as a data-driven metric-based saliency prediction method 
and trained with an adversarial loss function

RoiMammoGAN: the concept of saliency map was not considered in the 
study

Wang et al.65 SRGAN: high resolution focused GAN model RoiMammoGAN: also a high-resolution focused GAN model

Wu et al.66 ciGAN: used for contextual in-filling for synthesizing lesions. Applied to 
mammogram patches

RoiMammoGAN: uses the class label to condition the learning and training 
process. Applied to mammogram ROIs

Guibas et al.67 two-stage pipeline and pair-based GAN for medical image synthesis RoiMammoGAN: one-stage and single-based GAN for breast cancer mam-
mography image synthesis

Kazuhiro et al.14 DCGAN: based on deep convolutional. Applied to magnetic resonance 
(MR) images

RoiMammoGAN: based on deep convolutional-transpose network. Applied 
to breast images from mammograms using MIAS

Brock et al.69 BigGAN: class-conditioning and orthogonal regularization was used in the 
generator to achieve fidelity and variety RoiMammoGAN: class-label guided approach was used

Chen et al.69 Combined conditional and unconditional GANs with adversarial training 
and self-supervision

RoiMammoGAN: based on conditional GAN with adversarial training and 
semi-supervision

Shaham et al.70 SinGAN: unconditional GAN capable of learning from a single natural 
image without an accompanying label

RoiMammoGAN: learns from batch of images using conditional GAN 
approach

Wu et al.71 GP-GAN: leverage the strengths of the classical gradient-based for GAN RoiMammoGAN: Adam gradient-based approach was used

Yi et al.10 A GAN can help explore and discover the underlying structure of medical 
images

RoiMammoGAN: can detect the structure of abnormalities in a digital mam-
mogram (medical images)

Wu et al.72 U-net-based GAN was designed to generate lesions on mammograms RoiMammoGAN: was also designed to generate lesions on mammograms

Oyelade and  Ezugwu73 ArchGAN: capable of synthesizing mammograms with only architectural 
distortion RoiMammoGAN: an advanced model of the ArchGAN
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Discriminator and generator. The GAN model consists of the discriminator and generator. The genera-
tor, a deep network generator G , is used to create an image x(x = G(z)) from a sample noise z, drawn from using 
a normal or uniform distribution, is approximately equal to normal distribution say N(0, 1) or uniform distribu-
tion say U(−1, 1) . The generator G is described as a differentiable function represented by a multilayer percep-
tron with parameters θg . The second component of the GAN model represents the discriminator D , which is 
also a multilayer perceptron D(x; θd) that outputs a single scalar. D performs a binary classification that classifies 
the input as real or fake by assigning 1 or 0. While G synthesizes images from random noise z , D attempts to 
detect the originality or realistic level of the images fed into it. G is tuned in such a manner to deceive D to accept 
its generated images as real, while D optimizes itself to detect fake images emanating from G compared to real 
images drawn from a distribution of authentic images in a given domain. Figure 2 illustrates the composition of 
a generator G and a discriminator D.

To learn the generator’s distribution pg over data x , we define input noise variables pz(z) , then represent a 
mapping to data space as G(z; θg) , and train D to maximize the probability of assigning the correct label to both 
training examples and samples from G . Therefore, both D and G are trained to outdo each for their different 
purposes: G is aimed at minimizing log(1− D(G(z))) . Such training of D and G is described as a two-player 
minimax game with value function V(G,D) so that the gradient information is back propagated from D to G . By 
doing so, G is able to correct its parameters in minimizing the possibility of D recognizing its fake images. This 
results in a gameplay that eventually leads to either D or G winning and losing. The GAN model converges when 
the discriminator and the generator attain a situation when one player will not change its action regardless of 
the outcome of the opponent, something known as Nash equilibrium. We summarize this description in Eq. (1) 
from a  study9. From Eq. (1) below, p(data) represents the distribution of data from the training set, D(x) is the 
probability that x comes from the training data, and p(z) represents the input noise variable.

Equation (1) shows that the generator G wants to minimize the function D(G(z)) to be 1, while the discrimi-
nator D wants to maximize the function D(x) to be close to 1 and D(G(z)) to be close to 0.

You will recall that one of the major problems addressed by some studies reviewed in “Generative adversarial 
networks (GAN)” section revealed that training GAN models can be very problematic. Here, we first illustrate 
how the training of GAN is carried out using Fig. 2.

In Fig. 3, input into G is drawn from either normal or uniform distribution, and the output of G is passed to 
D in addition to a real image drawn from a distribution of real data x. Additionally, the cost functions of both G 
and D are recursively updated for improved performance of the GAN model.

Image synthesis with GANs may assume the form of conditional or unconditional approaches. The conditional 
approach demands that additional information such as class labels be added to random noise generated from 
noise input distribution, while unconditional synthesis refers to image generation from random noise without 
any other conditional information. However, developers of GANs need to choose the appropriate technique for 
modeling their networks carefully. Techniques commonly adopted in the medical imaging community include 
DCGAN, WGAN, and PGGAN due to their good training stability.

Selecting configuration parameters for GANs. We have pointed out in "Related works” section that 
one of the challenges of GANs is difficulty in training. Successful training will require choosing correct and 
appropriate parameters and hyperparameters to ensure that the desired GAN is not just stable but converges in 
reasonable time. Hence, it becomes necessary to know which parameters need to be fine-tuned during training. 
This also implies that every time the parameters of one of the models are updated, the nature of the optimization 
problem that is being solved is changed. Hence, it becomes necessary to select a model for minimizing errors 
(optimization) while guessing the calculation of parameters/weights of the GAN model. Different optimization 
flavors are used to minimize the loss errors, of which gradient descent (GD) is the most popular. Examples of GD 
optimization algorithms are stochastic gradient descent (SGD), Adadelta, RMSProp and Adam, although Adam 
appears to have gained the attention of GAN-based  researchers82.

The hyperparameters that can be optimized in an optimizer such as Adam or SGD are learning rate, momen-
tum, decay, beta1, beta2, and nesterov, activation functions at different layers (with sigmoid, tanh, ReLU, 

(1)min
G

max
D

V(D,G) = Ex∼pdata(x)

[

logD(x)
]

+ Ez∼pz(z)

[

log(1− D(G(z)))
]

Figure 2.  Illustration of generator and  discriminator11.
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LeakyReLU, ELU, SeLU, and other activation functions widely used), batch size (experiment with values of 8, 
16, 32, 54, or 128 for the batch size), loss functions (binary cross-entropy), the number of layers in G and D 
networks, the number of epochs (experiment with 100 epochs and gradually increase it to 1000–5000), and 
important hyperparameters named learning rate. The learning rate in GANs usually experiments with 0.1, 0.001, 
0.0001, and other small learning rates.

When using the Adam optimization algorithm, the alpha, which is also referred to as the learning rate or 
step size, helps to control the weight at the end of each batch, while the momentum hyperparameter controls 
how much to let the previous update influence the current weight update. Additionally, when training GAN, 
it is widely observed that choosing a small learning rate, as small as 0.00001, slows the proportion that weights 
are updated, while larger values of 0.3 result in faster initial learning before the rate is updated. In addition, it is 
a normal practice to allow beta1 to be kept at 0.9, while beta2 is set to be at 0.999. The epsilon hyperparameter 
is usually used to avoid the vanishing gradient problem, resulting in division by zero, and it is sometimes set to 
10E-8. Therefore, it is necessary for researchers to train GANs to carefully select parameters and hyperparameters 
to avoid some of the challenges associated with GAN stabilization.

Challenges and techniques for stabilizing/optimizing GANs. There are three major challenges asso-
ciated with GANs: model training instability, difficulty in performance evaluation, and mode collapse. GAN 
challenges present training problems because both the generator model and the discriminator model are trained 
simultaneously in a zero-sum game. Hence, this subsection attempts to summarize these problems and mitiga-
tion strategies in the literature.

A GAN is said to be stable when it converges in good time, and such a lack of convergence is the most com-
mon failure experienced in GAN training. Therefore, stabilizing and successfully optimizing GANs is a necessary 
technique to be acquired. GAN is said to converge when the discriminator cannot distinguish generated images 
from the generator and those from real images. Therefore, the problem of lack of convergence is indicative when 
the model loss does not settle down during the training process but exhibits a wavy pattern. Convergence fail-
ure is also described by a lack of attainment of equilibrium between the contesting networks D and G . Another 
indicator of a lack of convergence is the zero-value attainment of discriminator loss close to zero and when the 
loss of the generator continues to rise beyond the bound. To overcome the lack of convergence, one could ensure 
the consideration of either very large kernel sizes or very small values in D and G and to ensure that the choice 
of optimization algorithm is appropriate and not aggressive.

Mode collapse is another common challenge encountered when training GANs. The mode collapse problem 
occurs when GANs generate images that lack some of the modes of the multimodal data it was trained on. For 
instance, training a GAN on a digital mammogram dataset yields only subcategory abnormalities of breast 
images if the model exhibits mode collapse. Another example of mode collapse is when a GAN trained on a 
dataset consisting of digits from 0 to 9 generates images of some of the  digits83. The problem of mode collapse 
can therefore be summarized as when the distribution pg(x) learned by G focuses on a few limited modes of 
the data distribution pr(x) rather than generating diverse images from pr(x), thereby exhibiting low diversity 
of images with identical images pouring out of G. When training GAN, one can easily notice the presence of 
mode collapse if the line plot shows oscillations in the loss over time, especially in the generator model. Mode 
collapse is described as an architectural  problem84 sometimes arising from their highly volatile nature and the 
use of the wrong hyperparameter and therefore may require some architectural adjustment to mitigate it. GAN 
training is highly volatile, and using other hyperparameters will lead to mode collapse or vanishing gradients.

There have been several attempts to address these problems of stabilizing GANs. The first solution is Ada-
GAN, a network that uses training a collection of generators instead of one  generator85. Another network-based 
approach to tackle the nonstabilizing problem is MAD-GAN, an approach using multiple generators and one 
discriminator that detects if the provided sample is real or fake and etects which generator was responsible for 
creating the fake  sample86.  Kashikar84 also provided a solution through a mechanism that allows the generator 
to recognize various possible data clusters/modes simultaneously without being limited to the task of fooling 
the  discriminator84. Similarly, Mescheder et al.87 revealed that the main factors preventing convergence of GANS 
lie in the presence of eigenvalues of the Jacobian associated with gradient vector field with zero real-part and 
eigenvalues with a large imaginary  part87. Hence, they adopted local convergence for simplified gradient penalties 

Figure 3.  An illustration of how GAN is  trained52.
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even if the generator and data distribution lie on lower-dimensional manifolds. In related work, they showed that 
such approaches are effective, as they use those to learn high-resolution generative image models for a variety 
of datasets with little hyperparameter  tuning88.

In conclusion, a general observation states that a stable GAN will have a discriminator loss range between 0.5 
and 0.8, while the generator loss may also range between 1.0 and 2.0 or even higher. In addition, the accuracy 
of the discriminator on both real and generated images may range between 50 and 90%. Once a GAN achieves 
this state of stability, it is expected that G will be able to provide very high-quality images near the real images, 
thereby making it difficult for D to spot the differences. However, when D becomes too strong as opposed to 
G , the generated samples become too easy to separate from real samples, thus reaching a stage where gradients 
from D approach zero and not guiding further training of G10. A word of caution: both D and G may likely start 
off erratic and move around a lot before the model converges to a stable equilibrium.

Other strategies for achieving stable GANs may include the use of batchnorms in D and G ; use of Tanh and 
ReLU activation functions in output and all layers of G respectively while using LeakyReLU in all layers of D ; 
using pooling layers with strided convolutions in D and fractional-strided convolutions in G ; normalization of 
images between − 1 and 1; the use of a modified loss function of max log D instead of min log(1− D ); applica-
tion of dropouts in G such as a dropout which can be applied on several layers of our generator at both training 
and test  time89; flipping of labels when training G such that real images is turned to fake while fake images is 
presented as real; deriving input to G mostly from normal distribution; use of average pooling, Conv2d and stride 
for downsampling while ConvTranspose2d and stride may be used for upsampling; addition of noise to labels 
such that real image label is replaced with values between 0.7 and 1.1 while fake image label can be replaced 
with values between 0.0 and 0.490; keep checkpoints from the past of G and D and occasionally swap them out 
for a few iterations; adopt Adam optimization algorithm for G and sometimes SGD for D ; observe when loss 
of G is steadily decreasing while D goes down to zero during training; and finally, consideration of adding an 
additional channels to images.

Methodology for ROImammoGAN
In this section, we describe the approach used to design the proposed ROImammoGAN. First, the framework is 
discussed, and the generator and discriminator and the algorithm design are presented afterward. It is noteworthy 
stating that all methods were carried out in accordance with relevant guidelines and regulations as prescribed 
by the journal.

ROImammoGAN framework. The framework that combines GAN architectures proposed in this study is 
presented in Fig. 4. The framework consists of a preprocessing image module, the generator G, and discrimina-
tor D . We applied the framework to generate images of different abnormalities of breast cancer in digital mam-
mography. The proposed framework is supplied with input from a dataset d and then batched into ß batch size, 
resulting in ℵ groups of ß. Image samples are randomly drawn from four abnormality classes: architectural dis-
tortion, microclassification, asymmetry, and mass. To allow for training and fine-tuning the GAN model to the 
required peculiarity of each abnormality, the framework was designed to apply class-based samples iteratively. 
The implication of this is that only samples drawn from a particular class are applied to the GAN model during 
training. As a result, the proposed GAN model was fine-tuned for each class of abnormalities to promote good 
performance during image synthesis. Since the study aims to synthesize images with abnormalities, we omitted 
samples with normal (nonmalignant) labels, considering that such samples dominate in all datasets.

A batch of sample images in the group are first applied to image preprocessing techniques to allow for remov-
ing noise, cropped out unwanted edges, and resized input to support the fixed size allowed by the architecture. 
A batch consists of ß samples of WxH that are passed as input to D . Image preprocessing became necessary to 

Figure 4.  The proposed ROImammoGAN framework with the image preprocessing component and the GAN 
consisting of a generator and discriminator.
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reduce the high-resolution image sources from publicly accessible digital mammography databases. Hence, our 
original images from d are cropped into images of sizes [128, 128, 1] and resized to [64, 64, 1] without losing 
the quality of images from d. Furthermore, random numbers that serve as noise stored in z and of size 100 are 
generated using a uniform distribution and then pass as input to G . The two adversarial architectures, D and 
G , are then trained for a given number of epochs E until an appropriate model is achieved, depending on the 
abnormality represented in the images. We save different representations of model G that are able to synthesize 
classed-based images. Meanwhile, during training, the proposed framework outputs ß size of images generated 
by G after a specified number of iterations. We observe the quality of images generated across the training phase, 
and as the generated images appear real with D able to increase its classification accuracy, training is ended, and 
the state of the model is saved for the class of abnormality for which it has been trained.

The generator (G) and discriminators (D). The GAN model combines generator G and discriminator D archi-
tectures represented in Figs. 5 and 6, respectively. Network G accepts input z, which is further reshaped to 4 × 4 × 512 
and then forwards the resulting input through 6 blocks of transpose convolutional layers. Each layer applies a batch 
normalizer while using the ReLU activation function and a normal weight initializer with a standard deviation of 0.02. 
The generator G consists of a fully connected layer projecting input of a 100-dimensional uniform distribution to the 
network layers that use a 5 × 5 filter size. The discriminator network D consists of feature extractor F (img) and a layer 
for classification using sigmoid with weight vector ψl. Input to D is scaled to the range of the tanh activation function 
[− 1, 1]. Additionally, D consists of five fractionally strided convolution layers and a sixth layer of flattening that is fully 
connected and applies a sigmoid activation function. Each layer of D is designed to use batch normalization except for 
the last layer. This has been applied to mitigate the problems that often arise from poor weight initialization and stabilize 
learning by normalizing the input to each unit to zero mean and unit variance. The layers of both G and D use a kernel 
size of 5 × 5 and filter count of 1024, 512, 256, 128, and 64 and those of 64, 128, 256, 512, and 1024 for G and D, respec-
tively. Layer D uses leaky rectified linear unit functions with a slope of leak = 0.2; contrary to the use of RELU applied to 
G. for padding in both G and D, the same value was used in all layers of the two networks. A summary of the design of 
G and D is outlined in Tables 2 and 3, respectively.

Considering that training GANs requires that a Nash equilibrium be found for a two-player noncooperative game, 
we experimented with a combination of SGD and Adam and purely used Adam optimization algorithms in D and G . 
Finally, a gradient-based minimization technique was applied to minimize each player’s cost simultaneously. The models’ 
weights in the proposed ROImammoGAN are initialized as we have experimented with the He initializer variance scal-
ing initializer of type float32 and from a zero-centered normal distribution with a standard deviation of 0.02. A dropout 
of 0.5 was applied in D and G, and the performance was investigated using a batch size of 32.

Algorithm of the GAN framework. In Algorithm 1, the procedure for the framework proposed in this study is 
outlined. Algorithm 2 first highlights how image processing techniques are applied to class-based inputs batched into 
the GAN model. Training of the proposed ROImammoGAN begins with G receiving a random seed (z) as input, which 

Figure 5.  The generator (G) proposed in the ROImammoGAN and accepts input of size 100-dimension.

Figure 6.  The discriminator ( D ) accepts inputs of either a real image from d or fake from G and outputs the 
probability [between 0.0 and 1.0], indicating when an input is either real or fake.
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translates into an image G(z) . Afterward, D is used to classify real images drawn from d and fake sample images gener-
ated from G . The trained model is then used to generate images during the testing phase for the class of images for which 
it is trained. In every iteration, the algorithm computes the loss of D and G to check whether the model is doing well or 
otherwise. In addition, the gradients of the loss values are used to update the generator and discriminator. Meanwhile, 
we evaluate the accuracy of the synthesized images generated by G on every epoch.

Table 2.  Generator architecture: we adopted the input noise vector of dimensionality 100 drawn from a 
zero-mean Gaussian distribution. Minibatch Size: 32, Optimizer: Adaptive Moment Estimation (Adam) 
(η = 0.00001, β1 = 0.5, β2 = 0.999). All weights were initialized using the normal distribution initializer.

Input projection Layer1 Layer2 Layer3 Layer4 Layer5 Layer6

Type Fully connected Fractionally strided 
convolution

Fractionally strided 
convolution

Fractionally strided 
convolution

Fractionally strided 
convolution

Fractionally strided 
convolution

Fractionally strided 
convolution

Input [1 × 100] [4 × 4 × 1024] [8 × 8 × 512] [16 × 16 × 256] [32 × 32 × 128] [64 × 64 × 64] [128 × 128 × 32]

Output [4 × 4 × 1024] [8 × 8 × 512] [16 × 16 × 256] [32 × 32 × 128] [64 × 64 × 64] [128 × 128 × 32] [64 × 64 × 2]

Activation ReLU ReLU ReLU ReLU ReLU ReLU TanH

Batch norm Yes Yes Yes Yes Yes Yes Yes

Stride – 2 2 2 2 1 –

Padding – same Same Same Same Same Same

Kernel Size – 5 5 5 5 5 5

Kernels – 1024 512 256 128 64 32

Table 3.  Discriminator architecture: Minibatch Size: 32; Optimizer: Adam (η = 0.0001, β1 = 0.5, β2 = 0.999).

Layer1 Layer2 Layer3 Layer4 Layer5 Output

Type Convolution Convolution Convolution Convolution Convolution Full Con

Input [32 × 32 × 2] [64 × 64 × 64] [32 × 32 × 128] [16 × 16 × 256] [8 × 8 × 512] [4 × 4 × 1024]

Output [64 × 64 × 64] [32 × 32 × 128] [16 × 16 × 256] [8 × 8 × 512] [4 × 4 × 1024] [1]

Activation LeakyReLU LeakyReLU LeakyReLU LeakyReLU LeakyReLU Sigmoid

Batch norm Yes Yes Yes Yes Yes –

Stride 2 2 2 1 1 –

Padding Same Same Same Same Same –

Kernel Size 5 5 5 5 5 –

Kernels 64 128 256 512 1024 –
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Experimentation
This section presents different experiments carried out to achieve the state-of-the-art GAN model proposed and 
detailed in "Methodology for ROImammoGAN" section. First, we describe the training and testing parameter 
settings and the configuration of the computational resources utilized. Furthermore, we provide a detailed 
discussion of the datasets by presenting the metadata on the dataset and presenting a detailed illustration of the 
four (4) major abnormalities associated with breast cancer in digital mammography. Finally, to demonstrate 
the credibility of the performance of the proposed GAN model, we evaluated the outcome using gold standard 
metrics. These metrics are presented in detail, and the motivation for their selection has also been justified.

Configuration experimentation environment and parameter setting. Training and testing were 
performed using the TensorFlow library and dependent libraries using Python 3.7.3. The computational envi-
ronment consists of an Intel (R) Core i5-7500 CPU 3.40 GHz, 3.41 GHz; RAM of 16 GB; 64-bit Windows 10 OS. 
The experimentation carried out in this research demonstrates how the proposed ROImammoGAN is trained 
from scratch until good performance of image generation is achieved. We have investigated the performance of 
different parameters to understand how the model learns the problem well. For instance, for the learning rate 
hyperparameter, we experimented with 0.00001 and 0.0001 for G and 0.00004 and 0.0004 for D, respectively. The 
Adam optimizer was used for both G and D with parameter values set as beta = 0.5 and beta2 = 0.999 for G and 
beta = 0.5 and beta2 = 0.999 for D . The value of 1e−08 was set for the Adam optimizer epsilon parameter with a 
batch size of 32. To improve the performance of our model, we applied a smoothening operation to the labels 
using a smooth factor of 0.1.
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Experimentation datasets. Most of the publicly available digital mammogram databases are the Mam-
mographic Image Analysis Society (MIAS)  database91, Digital Database for Screening Mammography (DDSM)92, 
INbreast  database93, Breast Cancer Digital Repository (BCDR), and Image Retrieval in Medical Applications 
(IRMA). Table 4 summarizes the number of images taken from different databases for this study.

In this study, the MIAS datasets were used with a focus on the extraction of regions of interest (ROIs) for 
the whole image. We have focused on the details of the number of ROIs extracted both manually and using 
the automated method. In addition, statistics of the occurrence of the four different forms of abnormalities are 
presented. Samples derived as ROIs were resized to 299 × 299 pixels. The DDSM and CBIS-DDSM datasets have 
already been preprocessed and converted to 299 × 299 images by extracting the ROIs. Table 5 summarizes the 
description of samples from each of the databases. Our MIAS and DDSM + CBS ROI datasets are preprocessed 
into NumPy files, which are much more convenient to load and use in training.

We applied the selected image preprocessing techniques to the samples for uniformity in sizing and other 
features. Figure 7a–d outline the ROI format of samples extracted for the experimentation for the abnormalities, 
including architectural distortion, asymmetry, microcalcification, and mass. Samples are batched and resized 
and then serve as input to the discriminator.

Performance evaluation metrics. The evaluation of the proposed GAN model was carried out using 
relevant image analysis metrics. These quantitative and qualitative metrics are grouped into feature-based, ref-
erence-based, and nonreference-based metrics. The metrics are applied to the images generated by the GAN 
generator after achieving optimal training. The evaluation aims to compute numerical scores to support present-
ing the summary of the quality of generated images. Meanwhile, we note that a wide range of metrics exists in 
the literature for evaluation which includes the following: average log-likelihood, coverage metric, inception 
score (IS), modified inception score (m-IS), mode score, AM score, maximum mean discrepancy (MMD), Was-
serstein critic, birthday paradox test, classifier two-sample tests (C2ST), boundary distortion, number of statisti-
cally different bins (NDB), image retrieval performance, generative adversarial metric (GAM), tournament win 
rate and skill rating (TWRSR), adversarial accuracy and adversarial divergence, reconstruction error, sharpness 
difference, low-level image statistics (LLIS), Precision, Recall and F1 Score of generated images, universal image 
quality index (UIQI) and normalized relative discriminative score (NRDS).

In this study, the following quantitative techniques have been applied for evaluating the quality of images 
synthesized by the ROImammoGAN generator model: geometry score and Frechet inception distance (FID) 
as feature-based metrics; BRISQUE, NIQE, and PIQE as nonreference-based metrics and utilizes statistical 
features of a synthesized image to evaluate the image quality. Last, PSNR, FSIM, MES, DSSIM, and SSIM are the 
reference-based metrics used in this study to evaluate the quality of a synthesized image against the real image.

Feature-based metrics. Frechet inception distance (FID). The FID metric is a candidate formula to compute 
the distance between the vector representation of the synthesized and real images. It is expected that a synthe-
sized image with good quality should result in a lower FID score; otherwise, the image is assumed to be less 
similar to the real image. The highest similarity the two images may demonstrate is having an FID score of 0.0, 
maybe computed using Eq. (2).

(2)d2((m,C), (mw ,Cw)) = �m−mw�
2
2 + Tr(C + Cw − 2(CCw)

1/2)

Table 4.  Description of some benchmarked datasets used for experimentation.

Database No. of patients No. of images Cases of abnormalities Description

MIAS 161 322 (MLO view of images) All forms of abnormalities (32 shows architectural 
distortion)

Digitised to 50 micron pixel edge, and reduced to is 
200 micron pixel edge and padded/clipped so that all 
the images are 1024 × 1024

Images include radiologist’s truth-markings

DDSM 2620 10,480 (MLO and CC view of images) All forms of abnormalities (approximately 137 shows 
architectural distortion)

The database has some associated patient informa-
tion (like age at the time of study) and image infor-
mation (like spatial resolution)

Images are marked with ground truth information 
about the locations and types of suspicious regions

Table 5.  Description of datasets used for experimentation.

Dataset Total no. of samples/ROIs No. of samples/ROIs with abnormalities

Benchmark dataset
DDSM + CBIS-DDSM The dataset contains 55,890 of which 14% are positive and the remaining 86% negative 7824

MIAS 5136 ROIs 536
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Figure 7.  (a) Sample digital breast images with abnormalities characterized by architectural distortion from the 
MIAS dataset were drawn from a random batch of images during training. (b) Sample digital breast images with 
abnormalities characterized by asymmetry from the MIAS dataset were drawn from a random batch of images 
during training. (c) Sample digital breast images with abnormalities characterized by microcalcification from 
the MIAS dataset were drawn from a random batch of images during training. (d) Sample digital breast images 
with abnormalities characterized by mass from the MIAS dataset were drawn from a random batch of images 
during training.
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Geometry score (GS). The GS is another feature-based metric useful for comparing the real and synthesized 
images of GAN models. The metric computes its values using the variation in the geometrical properties of the 
real and synthesized images. The result may be used to measure the qualitative and quantitative values in evalu-
ating the performance of the GAN model. The lower the value obtained in computing GS, shown in Eq. (3), the 
better the performance of the GAN model.

Nonreference based metrics. Blind/referenceless image spatial quality evaluator (BRISQUE). The BRISQUE 
is an image evaluation metric that is often referred to as opinion-aware and analyses images with similar distor-
tions. The metric uses a subjective quality score.

Natural image quality evaluator (NIQE). The NIQE metric, also referred to as opinion-unaware, computes the 
quality of images with arbitrary distortion. Contrary to BRISQUE, NIQE does not use subjective quality scores, 
and hence the assessment of the comparison of BRISQUE and NIQE may not be readily obvious from a mere 
look.

Perception-based image quality evaluator (PIQE). Whereas both BRISQUE and NIQE require a trained model 
for their computation, PIQE does not. PIQE computes the quality of a given image based on an arbitrary distor-
tion in a blockwise approach.

Reference metrics. Mean square error (MSE). The MSE computes the average squared difference between the 
real and synthesized images and is computed using Eq. (4).

Structured similarity indexing method (SSIM). The SSIM, in Eq. (5), consists of three other metrics, namely, 
loss of correlation (LC) in Eq. (6), luminance distortion (LD) in Eq. (7) and contrast distortion (CD) in Eq. (8) 
to evaluate the quality of an image compared with another. The LC metric computes the correlation coefficient 
between the two images. CD evaluates the contrast of two given images using their standard deviation as it 
approaches 1 as the similarity of the images increases. LD computes the closeness of the mean luminance for two 
given images and may return a value close to 1 as the similarity of the images increases.

Structural dissimilarity (DSSIM). DSSIM is evaluated with SSIM and may be computed as shown in Eq. (9)

Feature similarity indexing method (FSIM). To obtain the normalized mean value of feature similarity between 
the real image and a corresponding synthesized image, we apply the FSIM, as shown in Eq. (10).

Peak signal to noise ratio (PSNR). The PSNR measures the quality of an image with respect to a synthesized 
image by using MSE, as shown in Eq. (11). The higher the value of PSNR is, the more acceptable the quality of 
the image generated by the GAN model.
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Other interesting metrics have been applied in this study and presented in the next section, such as the loss 
and accuracy of generated images and the loss of both D and G.

Results and discussion
This section presents the result of the experimentation described in the last section and compares its performance 
with other similar models. We have further discussed the benefit of the proposed model and training techniques 
adopted to achieve a stable, converging, and nonfailing GAN model. We enabled the GAN model to train each 
category of abnormality for a long time until the generated images improved. As a result, the training epoch for 
each class of abnormalities is not the same. We graphed the loss and accuracy of the generator and discriminator 
during training and during image synthesis.

The plots of the loss values and accuracies obtained during training for samples with architectural distortion, 
asymmetry, microclassification, and mass are shown in Figs. 8, 9, 10, and 11, respectively. We found this very inter-
esting to describe how our model learns the problem of generating these images with different abnormalities. The 
losses for both G and D are collected, and we illustrate the variation in the rise and fall of their losses, respectively.

We observed the training of the GAN model on the samples with architectural distortion and found that the 
generator is able to generate images with an average accuracy of 85%, as shown in Fig. 8. In the same figure, we 
observed that the generator’s loss values and discriminator rise and fall, respectively. This trend of loss values for 
both the generator and discriminator also presents similar plots for asymmetry, microcalcification, and mass. The 
implication of this trend in loss values confirms a progressive and useful learning pattern. Meanwhile, the accuracy 
of samples generated for the abnormalities architectural distortion, asymmetry, microcalcification, and mass have 
also been plotted. For instance, we have observed that the model has appeared to be learning quickly to generate 
samples of asymmetry and microcalcification with significant accuracy, whereas the mass abnormality slowly learns 
to generate samples with sufficient accuracy. Furthermore, the accuracy of both the true and generated (fake) images 
was summed, evaluated to 100%, and collected during training. These are computed to determine the significance 
of the accuracy of both images (real and fake) when combined if they both approach good-quality images.

The outcomes of this analysis are shown in Fig. 12a–c,d for architectural distortion, asymmetry, microclas-
sification, and mass, respectively. This evaluation shows that for samples with architectural distortion, the GAN 
model improves significantly within the epochs of 20,000–25,000. A similar result has been seen in the cases of 
microcalcification and mass abnormalities as the accuracy of both fake and real images improved progressively, 
although the former presents a false performance in the early phase of training. Meanwhile, the discriminator 
has demonstrated poor performance in learning the samples with asymmetry abnormalities, as the generator is 
able to fool it in the early phase of training.

We obtained samples of images generated during the training of the four classes of abnormalities, namely, 
architectural distortion, asymmetry, microclacification, and mass. Figure 13 shows these samples, demonstrating 
how the GAN model approaches synthesizing quality ROI-based digital mammograms for those abnormalities. 
Each case of the abnormalities is captured in Fig. 13a–c,d for architectural distortion, asymmetry, microclas-
sification, and mass, respectively.

The state of the models at the epoch, where outputs become qualitative, is saved for synthesizing new samples 
to support convolutional neural network (CNN) models aimed at classifying abnormalities in digital mammo-
grams. Using these stored models for each abnormality, we generated sample images to apply the computational 
metrics described in “Performance evaluation metrics” section. In Tables 6, 7, 8, and 9, the values obtained for 
the PSNR, SSIM, MSE, FSIM, BRISQUE, PQUE, and NIQE metrics are outlined in the cases of architectural 

(11)PSNR
(

f , g
)

= 10log10

(

2552

MSE(f , g)

)

Figure 8.  Training output on the proposed GAN model for architectural distortion showing how the generator 
learns in synthesizing images similar to real samples with architectural distortion.
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distortion, asymmetry, microclassification, and mass, respectively. Ten (10) real samples are drawn from each 
abnormality and compared with corresponding synthesized samples to confirm and stabilize the analysis. Simi-
larly, to illustrate the distribution of these metrics for each abnormality, we have utilized boxplots in Figs. 14, 
15, 16, and 17, which provides good visualization for these distributions.

The results of the reference-based metrics applied to the evaluation of the synthesized images, as listed in 
Tables 6, 7, and 8, reveal that the MSE, the average squared difference between the real and synthesized images, 
is minimal compared to what was obtained in Table 9. This indicates that our GAN model can learn the repre-
sentation of samples from architectural distortion, asymmetry, and microcalcification abnormalities except for 
some challenges encountered in the case of mass abnormalities. Furthermore, to investigate the images’ qual-
ity, we compute the PSNR, SSIM, DSSIM, and FSIM metrics. We discovered that for the PSNR metric, average 
values of 27.97, 27.69, and 27.93 were obtained for architectural distortion, asymmetry, and microcalcifications, 
respectively, whereas the mass abnormality yielded 8.26 for the same metric. Additionally, for the SSIM and 
DSSIM metrics, which also evaluate the quality of an image, paired values of 0.04 and 0.48, 0.74 and 0.13, and 
0.05 and 0.48 are obtained for architectural distortion, asymmetry, and microcalcifications, respectively, with 
mass abnormalities of 0.35 and 0.32 for the paired metrics. The performance of the GAN model on the four 
abnormalities when evaluated with FSIM metrics shows that the average values of 0.88, 0.78, 0.85, and 0.85 were 
obtained for architectural distortion, asymmetry, microcalcifications, and mass abnormalities, which are very 
competitive. The outcome of the reference-based metrics implies that the images generated by the proposed 
GAN model are acceptable. Meanwhile, to demonstrate the distribution of values across the ten (10) samples 
obtained from the synthesized images for each metric in this category, Figs. 14, 15, 16, and 17 depict their plots 
for architectural distortion, asymmetry, microcalcifications, and mass abnormalities, respectively. The data in 

Figure 9.  Training output on the proposed GAN model for asymmetry showing how the generator learns in 
synthesizing images similar to real samples with asymmetry.

Figure 10.  Training output on the proposed GAN model for microclacification showing how the generator 
learns in synthesizing images similar to real samples with microclacification.
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Figure 11.  Training output on the proposed GAN model for mass showing how the generator learns in 
synthesizing images similar to real samples with architectural distortion mass.

Figure 12.  A plot of the combination of the real and generated (fake) accuracies of (a) architectural distortion, 
(b) asymmetry, (c) microclacification, and (d) mass during training as evaluated under 100%.
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Table 6.  Quantitative comparison of the image quality analysis of ten (10) randomly selected synthesized 
images with architectural distortion (AD) for metrics ranging in the categories of reference-based, 
nonreference-based, and feature-based.

Images PSNR SSIM DSSIM MSE FSIM BRISQUE PQUE NIQE GS FID

1 27.97 0.04 0.48 103.73 0.90 27.05 22.65 25.81 0.00 343,130.76

2 28.00 0.04 0.48 103.07 0.88 17.79 23.17 37.07 0.00 321,157.06

3 27.94 0.04 0.48 104.41 0.89 29.11 23.04 30.40 0.00 413,143.07

4 27.83 0.03 0.48 107.18 0.89 15.33 22.70 28.10 0.00 429,359.88

5 27.98 0.04 0.48 103.47 0.89 28.32 23.67 25.31 0.00 330,390.83

6 28.00 0.05 0.48 103.09 0.88 16.62 23.71 27.50 0.00 339,042.88

7 27.93 0.05 0.47 104.61 0.87 34.25 24.23 22.30 0.00 425,196.46

8 27.99 0.04 0.48 103.22 0.87 34.27 23.26 27.56 0.00 308,565.14

9 28.02 0.06 0.47 102.61 0.90 18.04 23.01 27.48 0.00 260,963.64

10 28.04 0.05 0.47 102.22 0.87 37.61 24.91 24.45 0.00 335,339.00

Average 27.97 0.04 0.48 103.76 0.88 25.84 23.44 27.60 0.00 350,628.87

Figure 13.  (a) Sample images generated during the training of inputs with architectural distortion abnormality. 
(b) Sample images generated during the training of inputs with asymmetrical abnormalities. (c) Sample images 
generated during the training of inputs with microclacification abnormalities. (d) Sample images generated 
during the training of inputs with mass abnormality.
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this distribution show that the GAN model’s success in generating samples is primarily determined by features 
learned since just a few outliers in the boxplot are noticed.

Nonreference-based metrics are also evaluated against the proposed GAN model, and the results obtained are 
listed in Tables 6, 7, 8, and 9 for architectural distortion, asymmetry, microcalcifications, and mass abnormali-
ties, respectively. For instance, the results obtained for the BRISQUE metric reveal that average values of 25.84, 

Table 7.  Quantitative comparison of the image quality analysis of ten (10) randomly selected synthesized 
images with asymmetry (ASY) for metrics ranging in the categories of reference-based, nonreference-based, 
and feature-based.

Images PSNR SSIM DSSIM MSE FSIM BRISQUE PQUE NIQE GS FID

1 27.60 0.74 0.13 112.95 0.77 128.64 59.77 53.52 0.00 261,029.43

2 27.68 0.71 0.15 111.05 0.79 99.24 62.88 53.10 0.00 366,081.45

3 27.25 0.77 0.11 122.58 0.80 106.95 61.86 70.46 0.00 225,235.34

4 27.72 0.80 0.10 109.92 0.76 122.02 62.92 64.81 0.00 206,818.55

5 27.67 0.73 0.14 111.30 0.75 126.44 59.49 54.14 0.00 303,943.84

6 27.38 0.73 0.13 118.84 0.81 126.58 62.47 54.82 0.00 278,837.33

7 28.72 0.66 0.17 87.29 0.83 101.89 57.70 46.08 0.00 380,301.12

8 27.51 0.75 0.13 115.31 0.74 113.56 62.98 50.48 0.00 281,589.40

9 27.65 0.75 0.13 111.68 0.75 125.46 58.68 80.70 0.00 280,155.78

10 27.70 0.79 0.11 110.34 0.77 105.03 61.94 58.10 0.00 221,111.01

Average 27.69 0.74 0.13 111.13 0.78 115.58 61.07 58.62 0.00 280,510.32

Table 8.  Quantitative comparison of the image quality analysis of ten (10) randomly selected synthesized 
images with microcalcification (CALC) for metrics ranging in the categories of reference-based, nonreference-
based, and feature-based.

Images PSNR SSIM DSSIM MSE FSIM BRISQUE PQUE NIQE GS FID

1 27.74 0.05 0.48 109.44 0.84 18.63 19.56 34.02 0.00 1,147,952.54

2 28.11 0.05 0.47 100.46 0.86 21.52 16.54 44.94 0.00 1,168,311.50

3 27.75 0.05 0.47 109.27 0.89 22.43 12.99 33.25 0.00 1,608,844.19

4 27.79 0.03 0.48 108.27 0.87 32.13 20.36 38.35 0.00 961,768.18

5 27.67 0.05 0.47 111.16 0.85 17.46 14.22 32.89 0.00 1,186,538.32

6 27.87 0.05 0.48 106.21 0.89 10.95 15.37 24.84 0.00 973,001.32

7 28.36 0.05 0.48 94.89 0.78 13.00 15.14 25.14 0.00 1,368,235.44

8 27.79 0.05 0.47 108.17 0.86 20.40 15.44 31.20 0.00 1,211,028.80

9 28.43 0.05 0.47 93.38 0.79 22.52 13.48 37.85 0.00 1,578,621.76

10 27.84 0.06 0.47 106.80 0.90 24.81 20.36 29.34 0.00 867,607.44

Average 27.93 0.05 0.48 104.81 0.85 20.39 16.35 33.18 0.00 1,207,190.95

Table 9.  Quantitative comparison of the image quality analysis of ten (10) randomly selected synthesized 
images with mass (MS) for metrics ranging in the categories of reference-based, nonreference-based, and 
feature-based.

Images PSNR SSIM DSSIM MSE FSIM BRISQUE PQUE NIQE GS FID

1 7.61 0.35 0.33 1.13+04 0.84 52.10 69.89 150.22 0.00 446,829.53

2 10.36 0.38 0.31 1.13+04 0.80 52.10 69.89 150.22 0.00 481,668.03

3 10.53 0.39 0.31 1.13+04 0.84 69.52 69.96 122.82 0.00 429,579.98

4 8.97 0.37 0.32 1.13+04 0.83 52.10 69.89 150.22 0.00 462,492.35

5 8.34 0.36 0.32 1.13+04 0.87 52.10 69.89 150.22 0.00 443,899.24

6 8.37 0.36 0.32 1.13+04 0.83 52.10 69.89 150.22 0.00 465,602.81

7 8.54 0.36 0.32 1.13+04 0.87 52.10 69.89 150.22 0.00 497,179.28

8 5.21 0.30 0.35 1.13+04 0.90 52.10 69.89 150.22 0.00 571,124.48

9 4.11 0.25 0.38 1.13+04 0.88 52.10 69.89 150.22 0.00 580,729.34

10 10.54 0.39 0.31 1.13+04 0.87 69.52 69.96 122.82 0.00 448,607.70

Average 8.26 0.35 0.32 1.13+04 0.85 55.59 69.91 144.74 0.00 482,771.27
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115.58, 20.39, and 55.59 are obtained for architectural distortion, asymmetry, microcalcifications, and mass 
abnormalities, respectively. The GAN model performed appreciably well in the cases of architectural distortion 
and microcalcification abnormalities, whereas those of asymmetry and mass abnormalities were trailed behind 
in performance. Similarly, for the PIQE metrics, average values of 23.44, 61.07, 16.35, and 69.91 are obtained for 
architectural distortion, asymmetry, microcalcifications, and mass abnormalities, respectively. We see a similar 
distribution in performance by the proposed GAN model, where both abnormalities of architectural distortion 
and microcalcifications show better outcomes than those of asymmetry and mass abnormalities. This consistency 
on the side of the model still confirms that the model is able to maintain the syncretization pattern based on 
what it learned in the case of each abnormality. Finally, the NIQE metric is also evaluated on the proposed GAN 
model in all cases of abnormalities, and the results showed that average values of 27.60, 58.62, 33.18, and 144.74 
resulted in architectural distortion, asymmetry, microcalcifications, and mass abnormalities, respectively. The 
distribution of the values for the ten (10) samples of synthesized images in the case of architectural distortion, 
asymmetry, microcalcifications, and mass abnormalities are plotted in Figs. 14, 15, 16, and 17, respectively, for 
these three metrics in the category of nonreference based. As reflected in their average values, we see that the 
distribution of values for the architectural distortion, microcalcifications, and asymmetry for the BRISQUE, 
PIQE, and NIQE metrics are closely spaced with minimal outliers, while that of the mass abnormalities for the 
same metrics BRISQUE, PIQE, and NIQE indicated more outliers and wider distribution values.

The feature-based metrics are also evaluated against the GAN model proposed in this study. Particularly, the 
geometry score (GS) and the FID metrics are evaluated to investigate and compare the feature constitution that 
exists between the real image and those synthesized by the GAN model. This feature similarity measurement 
for GS in all cases of architectural distortion, asymmetry, microcalcifications, and mass abnormalities tends 

Figure 14.  Boxplot showing the distribution of values obtained for ten randomly selected samples of 
architectural distortion in computational metrics PSNR, SSIM, FSIM, BRISQUE, PQUE, and NIQE.
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toward zero (0), confirming the good visual quality of the images generated by the proposed GAN model and 
indicating that the images, when compared with those from the real distribution, are almost identical with little 
diversity in their topology. Similarly, the values obtained for the FID metric, which is a calculation of the distance 
between the real image and that synthesized, are expected to yield many values. As seen in Tables 6, 7, 8, and 9 
for architectural distortion, asymmetry, microcalcifications, and mass abnormalities, respectively, those values 
obtained are significant for all abnormalities.

In Fig. 18, sample images synthesized using the fully trained GAN model are presented. These represent 
regions of interest (ROIs) with different forms of abnormalities.

The results plotted in Fig. 19a–c present the loss values and accuracy obtained for the first fifty (50) samples 
generated with the trained GAN model in the cases of architectural distortion, asymmetry, and microcalcification 
abnormalities, respectively. Interestingly, we discovered that the asymmetry accuracy consistently outputs 0.1, 
while those of architectural distortion and microcalcification peak to approximately 0.7 and 0.78, respectively. To 
compare the performance of the proposed ROImammoGAN with state-of-the-art image synthesizing models, we 
carried out a comparative analysis of the work in this study and presented the results in Table 10. A corresponding 
plot of the results obtained for SSIM, PSNR, and MSE in the table is shown in Fig. 20.

The comparison of the performance of the proposed ROImammoGAN, as seen in Table 10, reveals that based 
on the SSIM metric, which evaluates the quality of the real image compared with the synthesized image, our 
model trails those of cGAN, perceptual GAN, SC-GAN, and MedGAN with values of 0.8960, 0.9071, 0.9046, and 
0.9160 compared with our proposed model, which outputs 0.8000. The range of distribution of similar studies 
and that obtained by our study illustrate that the quality of our generated samples is significant. This comparison 
is plotted in Fig. 20a. Similarly, we have compared the performance of our model with other state-of-the-art 
GAN models using the structural dissimilarity SSIM (DSSIM) and demonstrated that the values of 0.05, 0.05, 
0.05, and 0.04 obtained by cGAN, perceptual GAN, SC-GAN, and MedGAN compared with 0.10 yielded by our 
model are good. The PSNR, which also measures the quality of an image with respect to a synthesized image, 
is also applied to evaluate our GAN model in comparison with similar models. The results show that our GAN 

Figure 15.  Boxplot showing the distribution of values obtained for ten randomly selected samples of 
asymmetry in computational metrics PSNR, SSIM, FSIM, BRISQUE, PQUE, and NIQE.
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model outputs a better performance by attaining a value of 27.72 for PSNR compared with those of 23.65, 24.20, 
24.12, and 24.62 cGAN, perceptual G SC-GAN, and MedGAN. A graphical illustration of these values is shown 
in Fig. 20b. This also confirms that the quality of images synthesized by our proposed GAN model is acceptable 
and qualitative. Finally, for the MSE metric, we see from Table 10 that our suggested GAN model showed the 
lowest mean squared error value compared with values obtained from state-of-the-art GAN models used for the 
comparison task, and the plot in Fig. 20c also confirms this. In summary, the implication of the findings from the 
results obtained in the experimentation of the proposed ROImammoGAN demonstrates that the model is useful 
for generating image samples for different abnormalities of digital mammography images. Therefore, the outcome 
of this study is a GAN model capable of synthesizing ROI-based image samples in the category architectural 
distortion, asymmetry, microcalcifications, and mass abnormalities. These synthesized images may be used to 
augment class-imbalanced datasets, which may further be used for classification problems in CNN architectures.

Conclusion
This study presented a GAN model for generating digital mammograms to augment insufficient publicly and 
privately available benchmark datasets. The approach adopted in this paper is similar to that of DCGAN, except 
that training was carried out category-based for abnormalities associated with breast images. First, the discrimi-
nator was designed so that it is able to discriminate samples drawn from original data and those synthesized 
using the generator. The combined G and D models were fine-tuned to learn the characteristics of features in the 
categories of abnormalities in the databases. Meanwhile, image preprocessing techniques were applied to samples 
drawn from public datasets to ensure that the proposed GAN model synthesizes good examples. Experimenta-
tion was conducted using MIAS benchmark datasets, and the results obtained showed that the proposed GAN 
model performed well, demonstrating the state-of-the-art GAN models for synthesizing digital mammography 
images of different abnormalities. Therefore, the resulting GAN model can be adopted for image synthesis and 
augmentation in studies characterizing abnormalities in breast images. In the future, we aim to investigate the 

Figure 16.  Boxplot showing the distribution of values obtained for ten randomly selected samples of 
microcalcification in computational metrics PSNR, SSIM, MSE, FSIM, BRISQUE, PQUE, and NIQE.
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Figure 17.  Boxplot showing the distribution of values obtained for ten randomly selected samples of mass in 
computational metrics PSNR, SSIM, MSE, FSIM, BRISQUE, PQUE, and NIQE.

Figure 18.  Sample image outputs in 1000 iterations with architectural distortion synthesized using the fully 
trained generator.
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Figure 19.  Plot of accuracy and loss values for testing the trained model on samples with (a) architectural 
distortion, (b) asymmetry, and (c) microcalcification.

Table 10.  Comparison of the performance of GAN proposed in this study with state-of-the-art GANs using 
metrics of reference-based category.

Authors and references GAN model SSIM DSSIM PSNR MSE
69 Conditional GAN (cGAN) 0.8960 0.05 23.65 313.2
94 Peceptual GAN 0.9071 0.05 24.20 287
56 Style-content (SC-GAN) 0.9046 0.05 24.12 282.8
79 MedGAN 0.9160 0.04 24.62 264.8

This study ROImammoGAN 0.8000 0.10 27.72 109.92
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adaptation of the proposed GAN model to produce samples with digital histopathology images and those most 
interestingly, for 3D tomosynthesis images.

Data availability
Freely available MIAS ROI Database that supports the findings of this study was  used88. Moreover, all methods 
were carried out in accordance with relevant guidelines and regulations as prescribed by the journal.
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